

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

## BREVET DE TECHNICIEN SUPERIEUR BIOTECHNOLOGIES

## BIOLOGIE DES PROCARYOTES ET DES EUCARYOTES

#### Sous-épreuve de Microbiologie et Génie Fermentaire

# DUREE DE L'EPREUVE : 2h00 COEFFICIENT : 1

#### Matériel autorisé :

- dictionnaire anglais/français autorisé, calculatrice autorisée.

Tout autre matériel est interdit

Dès que ce sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 10 pages numérotées de 1/10 à 10/10.

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 1/10  |

#### La méthanisation biologique

La méthanisation est un processus de digestion anaérobie dans laquelle un écosystème microbien complexe transforme la matière organique en compost, dioxyde de carbone et méthane. La méthanisation permet d'éliminer la pollution organique en générant une énergie renouvelable : le biogaz.

La méthanisation se déroule en plusieurs étapes :

BIOMASSE/MATIERE ORGANIQUE
FRAICHE
(lisier, fumier, déchets organiques)

HYDROLYSE

MATIERE ORGANIQUE SOLUBLE
(sucres, acides aminées, acides gras)

ACIDOGENESE + ACETOGENESE

ACETATE + HYDROGENE + DIOXYDE DE CARBONE

METHANOGENESE

BIOGAZ (méthane + dioxyde de carbone)
+
DIGESTAT (eau, minéraux dissous...)

#### 1. Les acteurs biologiques du procédé de méthanisation (8 points)

Les différentes étapes de la méthanisation sont réalisées par des Eubactéries et des Archées.

La première étape consiste à **hydrolyser la matière organique** complexe en monomères. Le composant principal de la matière organique issue des déchets agricoles est la cellulose. Pour améliorer les rendements de production en méthane, le biométhanisateur est également inoculé avec des souches cellulolytiques. Le **document 1** présente la méthode de sélection de souches cellulolytiques performantes (1a) et leur identification (1b).

- 1.1 Schématiser l'arbre phylogénétique du monde vivant en trois domaines.
- **1.2** Indiquer la nature du milieu de base.
- 1.3 Présenter les intérêts de complémenter le milieu en carboxyméthyl cellulose (CMC).
- **1.4** Expliquer le principe de la mise en évidence de l'activité cellulolytique.
- **1.5** Indiquer les deux types de taxonomie auxquels les identifications du **document 1b** font référence.
- 1.6 Dans le cas des identifications résumées dans le tableau 2 du document 1b, préciser le principe physicochimique permettant de révéler les caractères positifs ou négatifs des fermentations.

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 2/10  |

**1.7** Identifier la souche la plus intéressante dans la problématique étudiée. Justifier le choix.

La méthanogénèse à partir de l'acétate peut suivre deux voies différentes présentées dans le document 2 :

- la voie acétoclastique (AC), présentée en (1) et réalisée par exemple par Methanosarcinaceae spp.
- l'oxydation syntrophique de l'acétate (OSA) qui s'effectue en deux étapes (2) et (3) par des bactéries oxydant l'acétate comme *Clostridium ultunense* par exemple, en association syntrophique avec des méthanogènes hydrogénotrophes en général *Methanomicrobiales spp.*, *Methanobacteriales spp.* ...
- **1.8** Proposer une définition de la syntrophie.
- 1.9 Comparer les réactions (1) et (2) d'un point de vue énergétique.
- **1.10** Montrer l'importance thermodynamique de la syntrophie dans le cas de la méthanogénèse OSA.

L'acétate produit au cours de l'étape d'acétogénèse peut être métabolisé par les bactéries sulfato-réductrices (BSR). Ce **métabolisme compétiteur** conduit à une diminution de la production de méthane et à la pollution du biogaz par H<sub>2</sub>S. Le métabolisme de ces bactéries est présenté dans le **document 3**.

- **1.11** Citer les deux donneurs d'électrons pouvant être utilisés par les BSR. En déduire les types trophiques de ces bactéries.
- 1.12 Préciser l'accepteur final d'électron. En déduire le type respiratoire des BSR.

#### 2. Le procédé de biométhanisation (4 points)

La succession des populations bactériennes pendant une digestion thermophile a été étudiée à partir d'une biométhanisation réalisée en biofermenteur de laboratoire. Cette étude comporte l'évaluation en temps réel :

- de différents paramètres physicochimiques dans le bioréacteur (**document 4a**)
- des populations microbiennes au cours du processus de biométhanisation (document 4b).
- **2.1** Décrire l'évolution de la concentration en acide acétique et en méthane (**document 4a**).
- **2.2** Établir le lien entre les deux courbes analysées et les étapes de la méthanisation mises en évidence.
- **2.3** Interpréter **(document 4b)** l'évolution de la population des Méthanosarcinales en fonction de la production des gaz.
- **2.4.** A l'aide du **document 4b**, évaluer les paramètres de croissance des Méthanosarcinales entre 20 et 25 jours.

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 3/10  |

#### 3. Décontamination du digestat (6 points)

La biomasse utilisée lors de la biométhanisation peut être contaminée par différents agents pathogènes comme les virus. Ces agents pathogènes risquent d'être conservés dans le digestat et épandus sur les sols cultivables. Il est donc impératif de le décontaminer en fin ou au cours du procédé de production du biogaz.

Une étude de désinfection du digestat par l'ammoniac a été menée afin d'éliminer des virus à ARN simple brin. Le **document 5** présente les différents virus soumis à désinfection et leurs conditions de culture. Les six types de virus sont préalablement cultivés au moyen de quatre lignées cellulaires différentes.

- 3.1 Indiquer la caractéristique essentielle des lignées cellulaires utilisées.
- **3.2** Présenter le schéma annoté du virus AIV.

Un exemple de cycle de multiplication d'un virus ARN (-) non segmenté est présenté document 6.

- 3.3 Identifier les étapes 1 à 6 du cycle viral.
- **3.4** Présenter le premier événement de l'étape 4 permettant l'expression du virus. Justifier de son importance par comparaison avec le cycle de multiplication d'un virus ARN (+).

L'action de l'ammoniac est testée sur les virus MS2 et FCoV. Le **document 7** présente certains des résultats collectés.

- **3.5** Rappeler la signification de la grandeur D.
- 3.6 Estimer la concentration minimale en NH₃ permettant d'inactiver 90 % de la population des deux virus en moins de 10 h.
  Donnée : un traitement de 10 h correspond à log D = 1
- **3.7** A l'aide des données du **document 5**, émettre une hypothèse permettant d'expliquer la différence de résistance au traitement observée entre les deux virus.

#### Clarté et rigueur de l'expression écrite de la composition (2 points)

Justesse et rigueur de l'expression écrite (orthographe, grammaire, vocabulaire) Clarté de la présentation générale de la copie et fluidité de la lecture

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 4/10  |

#### Document 1:

#### 1a. Sélection des souches cellulolytiques

#### Screening of cellulase-producing bacteria

Each bacterial culture was inoculated onto CMC agar and was incubated at 30 °C for 7 days. The CMC agar plates were flooded with iodine\* at room temperature for 3 min; the excess was removed, and the diameter of the degradation halo around each colony was measured. The strains that formed hydrolysis zones were selected for use in subsequent assays. The positive control for cellulase activity was 0.5 U.mL<sup>-1</sup> cellulase from *Aspergillus niger*.

To flood = inonder

#### Composition du milieu CMC agar (carboxymethyl cellulose) :

Milieu de base supplémenté avec 10 g.L-1 de CMC.

#### Milieu de base :

| 1<br>0,5<br>20<br>0,01<br>0,01<br>0,3<br>15 | g.L <sup>-1</sup><br>g.L <sup>-1</sup><br>g.L <sup>-1</sup><br>g.L <sup>-1</sup><br>g.L <sup>-1</sup> | KH <sub>2</sub> PO <sub>4</sub> MgSO <sub>4</sub> ·7H <sub>2</sub> O NaCl FeSO <sub>4</sub> ·7H <sub>2</sub> O MnSO <sub>4</sub> ·H <sub>2</sub> O NH <sub>4</sub> NO <sub>3</sub> agar |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15                                          | g.L <sup>-1</sup>                                                                                     | agar                                                                                                                                                                                    |
|                                             |                                                                                                       |                                                                                                                                                                                         |

Applied and Environmental Microbiology, July 2014, Volume 80, Number 14, p. 4199–4206

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 5/10  |

<sup>\*</sup> Le diiode colore la cellulose en bleu.

#### **Document 1**

#### 1b. Résultats et identification des souches

#### DNA extraction and molecular identification using 16S rRNA genes

The 16S rRNA gene was amplified. Then the products were sequenced. Sequences were analyzed, assembled and subsequently analyzed using BLASTN software against the nonredundant database available in GenBank.

| Bacterial<br>strain | Host species       | Species with sequence homology <sup>a</sup> | E value | Similarity (%) | Identity<br>(%) | Homolog<br>GenBank accession no. | Diam of<br>halo (cm) |
|---------------------|--------------------|---------------------------------------------|---------|----------------|-----------------|----------------------------------|----------------------|
| MC23                | Mytilus chilensis  | Aeromonas bivalvium                         | 0.0     | 100            | 99              | DQ504430.1                       | 1.1                  |
| MC25                | Mytilus chilensis  | Aeromonas salmonicida                       | 0.0     | 99             | 98              | AB472980.1                       | 1.5                  |
| MA2                 | Mesodesma donacium | Aeromonas bivalvium                         | 0.0     | 100            | 99              | DQ504430.1                       | 1.1                  |
| MA5                 | Mesodesma donacium | Raoultella ornithinolytica                  | 0.0     | 100            | 99              | CP004142.1                       | 0.8                  |
| MA11                | Mesodesma donacium | Klebsiella sp.                              | 0.0     | 100            | 99              | GU290323.1                       | 0.9                  |

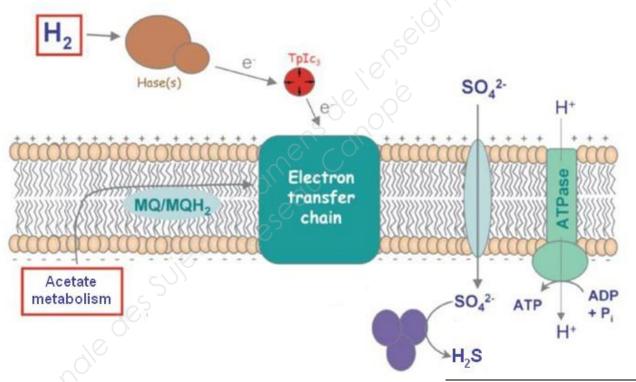
<sup>&</sup>lt;sup>4</sup> Sequence homology was determined with BLASTN.

<u>Tableau 1 : Diamètre des halos de dégradation de la cellulose et identification des</u> souches

| Test                          | Reaction and/or enzyme                                               | Aeromonas<br>bivalvium<br>(MC23) | Aeromonas<br>salmonicida<br>(MC25) | Aeromonas<br>bivalvium<br>(MA2) | Raoultella<br>ornithinolytica<br>(MA5) | Klebsiella sp<br>(MA11) |
|-------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------------------|-------------------------|
| ONPG                          | β-Galactosidase ( <i>ortho</i> -nitrophenyl-β-D-galactopyranosidase) | (P) (C)                          | +                                  | +                               | +                                      | =                       |
| ADH                           | Arginine dihydrolase                                                 | +                                | +                                  | +                               | -                                      | -                       |
| LDC                           | Lysine decarboxylase                                                 |                                  | _                                  |                                 | +                                      | +                       |
| ODC                           | Ornithine decarboxylase                                              | 2.4                              | _                                  | -                               | -                                      | -                       |
| CIT                           | Citrate utilization                                                  |                                  | _                                  |                                 | +                                      | +                       |
| H2S                           | H <sub>2</sub> S production                                          | <del></del> -                    | _                                  | -                               | =                                      | -                       |
| URE                           | Urease                                                               | _                                | _                                  |                                 | +                                      | +                       |
| TDA                           | Tryptophan deaminase                                                 | +                                | +                                  | +                               | +                                      | +                       |
| IND                           | Indole production                                                    | +                                | +                                  | +                               | +                                      | +                       |
| VP                            | Acetoin production (Voges-Proskauer test)                            | <del></del> -                    | +                                  | +                               | +                                      | +                       |
| GEL                           | Gelatinase                                                           | +                                | +                                  | +                               | _                                      | -                       |
| GLU                           | Fermentation/oxidation (glucose)                                     | +                                | +                                  | +                               | +                                      | +                       |
| MAN                           | Fermentation/oxidation (mannitol)                                    | +                                | +                                  | +                               | +                                      | +                       |
| INO                           | Fermentation/oxidation (inositol)                                    | <del>200</del> 3                 | _                                  | -                               | +                                      | +                       |
| SOR                           | Fermentation/oxidation (sorbitol)                                    | _                                | _                                  |                                 | +                                      | +                       |
| RHA                           | Fermentation/oxidation (rhamnose)                                    | <del></del> -                    | _                                  | -                               | +                                      | +                       |
| SAC                           | Fermentation/oxidation (saccharose)                                  | +                                | +                                  | +                               | +                                      | +                       |
| MEL                           | Fermentation/oxidation (melibiose)                                   |                                  | _                                  | <b>—</b>                        | +                                      | +                       |
| AMY                           | Fermentation/oxidation (amygdalin)                                   | -                                | =                                  | +                               | +                                      | +                       |
| ARA                           | Fermentation/oxidation (arabinose)                                   | +                                | +                                  | +                               | +                                      | +                       |
| Nitrate reduction<br>GLU tube | NO <sub>2</sub> production                                           | =                                | (4)                                | +                               | +                                      | +                       |

Tableau 2 : Profils biochimiques des souches isolées obtenus par API20E

Applied and Environmental Microbiology, July 2014, Volume 80, Number 14, p. 4199–4206

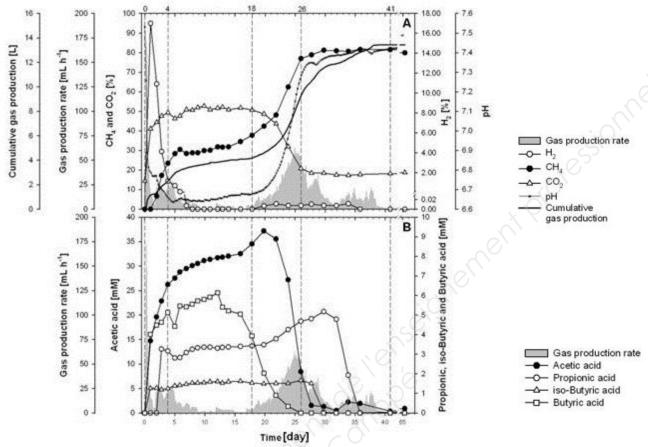

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 6/10  |

#### Document 2 Les réactions de méthanogénèse

Voie AC  $\begin{array}{ll} \text{CH}_3\text{COO}^- + \text{H}_2\text{O} \rightarrow \text{CH}_4 + \text{HCO}_3^- \\ \Delta G^{0'} = -31.0\,\text{kJ}\,\,\text{mol}^{-1} \end{array} \tag{1}$   $\begin{array}{ll} \text{CH}_3\text{COO}^- + 4\text{H}_2\text{O} \rightarrow 2\text{HCO}_3^- + 4\text{H}_2 + \text{H}^+ \\ \Delta G^{0'} = +104.6\,\text{kJ}\,\,\text{mol}^{-1} \end{array} \tag{2}$   $\begin{array}{ll} \text{Voie OSA: \'etape 2} & \begin{array}{ll} \text{4H}_2 + \text{HCO}_3^- + \text{H}^+ \rightarrow \text{CH}_4 + 3\text{H}_2\text{O} \\ \Delta G^{0'} = -135.6\,\text{kJ}\,\,\text{mol}^{-1} \end{array} \tag{3}$ 

FEMS Microbiol Ecol 83 (2013) 38–48

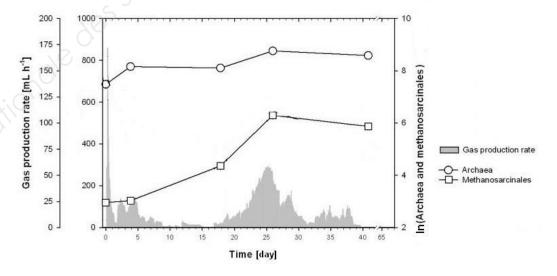
### Document 3 Représentation schématique de la production d'ATP chez les bactéries sulfato-réductrices (BSR)




Energies 2015, 8, 399-429

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 7/10  |

#### **Document 4**


#### 4a : Evolution des différents paramètres suivis dans le bioréacteur



Fermenter performance. pH-values, qualitative and quantitative properties of biogas (A) and concentrations of volatil fatty acids (B) during the fermentation. Gas production rate (grey background) is given in A and B to ease the comparison. Dashed lines at t=0, 4, 18, 26, 41 outline the samples which were additionally investigated by molecular approaches.

To ease = faciliter

#### 4b : Evolution des populations bactériennes au cours du processus de biométhanisation



Les Méthanosarcinales sont une sous population des Archées.

PLOS ONE, February 2014, Volume 9, Issue 2, e86967

| BTS BIOTECHNOLOGIES                                                                                   |         | Session 2016 |
|-------------------------------------------------------------------------------------------------------|---------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF | Page : 8/10  |

#### Propriétés des différents virus/bactériophages utilisés et Document 5 leurs conditions de culture

The cell lines were grown to confluence in 25-cm<sup>2</sup> cell culture flasks in their respective cell culture medium (CCM), and the virus was inoculated and cultivated to a 80 to 100% cytopathogenic effect (CPE),

TABLE 1. Properties of the viruses/bacteriophage used in the study<sup>a</sup>

| Virus/phage Shape | Family                | Size (nm)        | Envelope | Genome            |                  |           |
|-------------------|-----------------------|------------------|----------|-------------------|------------------|-----------|
|                   |                       |                  |          | Type <sup>b</sup> | Size (kb)        |           |
| AIV               | Spherical/pleomorphic | Orthomyxoviridae | 80–120   | Yes               | Segmented -ssRNA | 10.0–14.6 |
| BPIV-3            | Spherical/pleomorphic | Paramyxoviridae  | 150-200  | Yes               | -ssRNA           | 15.4      |
| FCoV              | Spherical             | Coronaviridae    | 100-120  | Yes               | +ssRNA           | 27.6-31   |
| FCV               | Icosahedral           | Caliciviridae    | 27-40    | No                | +ssRNA           | 7.7       |
| MS2               | Icosahedral/spherical | Leviviridae      | 26       | No                | +ssRNA           | 3.6       |

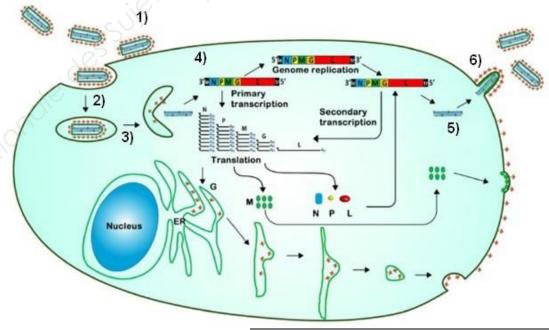

<sup>&</sup>lt;sup>a</sup> See references 24, 26, 27, 38, 43.

TABLE 2. Cultivation conditions for the viruses and bacteriophage used in the study

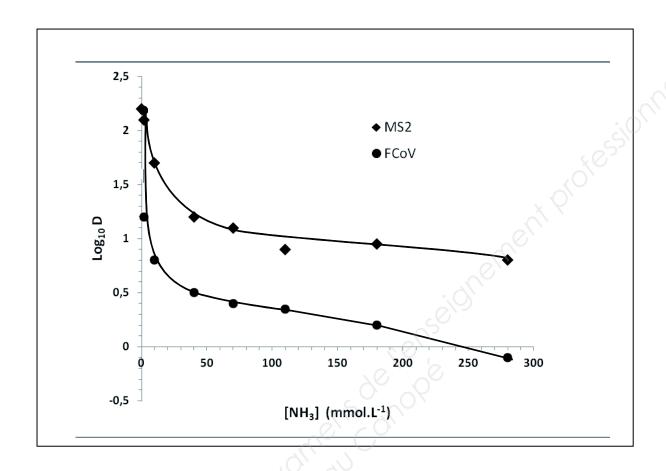
| Microorganism | Cell/bacterium (strain) | CCM <sup>f</sup>                                           | $\mathrm{MOI}^a$ | Titer (log <sub>10</sub> ml <sup>-1</sup> ) <sup>b</sup> |
|---------------|-------------------------|------------------------------------------------------------|------------------|----------------------------------------------------------|
| LPAIV H5N3    | MDCK (ATCC CCL-34)      | EMEM with 2.5 mg L <sup>-1</sup> TPCK-trypsin <sup>c</sup> | 0.001            | 7.0                                                      |
| HPAIV H7N1    | MDCK (ATCC CCL-34)      | EMEM with 2% (vol/vol) FBS <sup>d</sup>                    | 0.001            | 8.3                                                      |
| BPIV-3        | BTg                     | EMEM-Tricine with 2% (vol/vol) FBSe                        | 0.1              | 7.0                                                      |
| FCV           | Fcwf (ATCC CRL-2787)    | EMEM-Tricine with 2% (vol/vol) FBS                         | 0.1              | 6.6                                                      |
| FCoV          | Fcwf (ATCC CRL-2787)    | EMEM-Tricine with 2% (vol/vol) FBS                         | 0.03             | 6.7                                                      |
| MS2           | WG49 (ATCC 700730)      | Nutrient broth                                             | 1                | 10                                                       |

Applied and Environmental Microbiology, June 2011, Vol. 77, No. 12, p. 3960-3966

#### Document 6: Exemple de cycle de multiplication d'un virus ARN (-)



Anica Dricu (Ed.), ISBN: 978-953-51-0881-8, InTech


| BTS BIOTECHNOLOGIES                                                                                   | Session 2016 |             |
|-------------------------------------------------------------------------------------------------------|--------------|-------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF      | Page : 9/10 |

b -ssRNA, negative-sense single-stranded RNA; +ssRNA, positive-sense single-stranded RNA.

MOI, multiplicity of infection.
 TCID<sub>50</sub> for virus and number of PFU for bacteriophage.
 EMEM, Eagle's minimal essential medium with 120 mg liter<sup>-1</sup> penicillin G sodium salt and 100 mg liter<sup>-1</sup> streptomycin sulfate; TPCK-trypsin, trypsin treated with L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (Worthington Biochemical Corporation, Lakewood, NJ).
 FBS, fetal bovine serum (PAA Laboratories, Pasching, Austria).
 EMEM-Tricine, EMEM with 3 g liter<sup>-1</sup> Tricine and 25 mg liter<sup>-1</sup> neomycin sulfate.
 FSVA production. Unpeak Swadon.

<sup>&</sup>lt;sup>f</sup> SVA production, Uppsala, Sweden. <sup>g</sup> BT, bovine turbinate.

#### Document 7 Action de l'ammoniac sur les virus MS2 et FCoV



 $Log\ D$  values (h) of ssRNA viruses as a function of ammonia concentration (mmol.L<sup>-1</sup>) in waste.

D values: the time required to reduce the population by 1 Log [90%].

Applied and Environmental Microbiology, June 2011, Vol. 77, No. 12, p. 3960–3966

| BTS BIOTECHNOLOGIES                                                                                   | Session 2016 |              |
|-------------------------------------------------------------------------------------------------------|--------------|--------------|
| Biologie des procaryotes et des eucaryotes<br>U4.1 Sous épreuve de Microbiologie et Génie Fermentaire | BOE4MGF      | Page : 10/10 |