

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

BREVET DE TECHNICIEN SUPÉRIEUR BIOTECHNOLOGIES

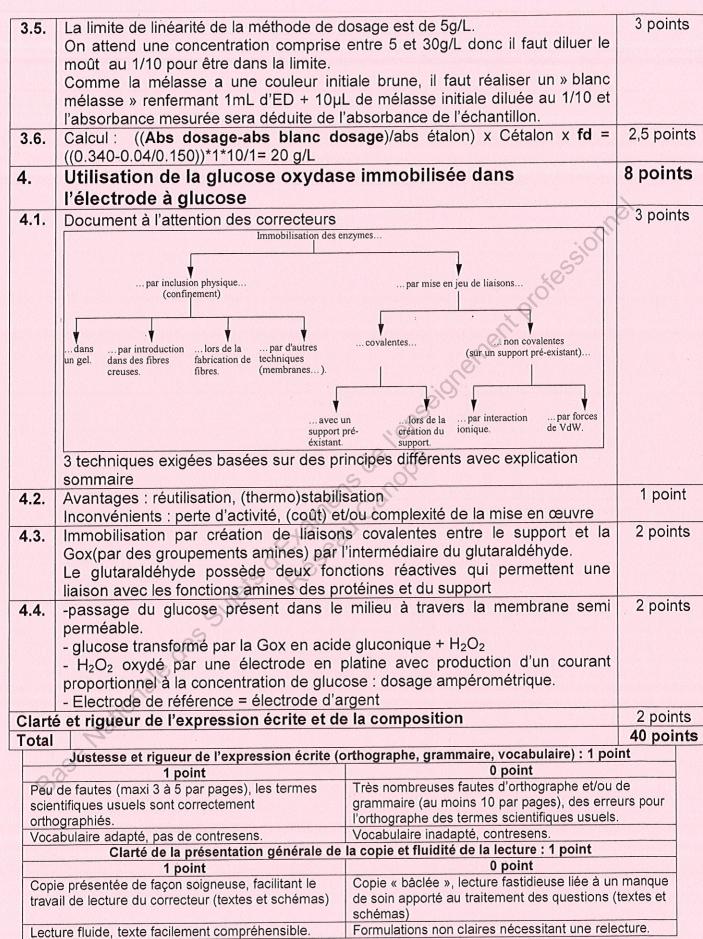
BIOCHIMIE STRUCTURALE ET FONCTIONNELLE DES Base Nationale des Suiets di Examens de l'enseire de Suiets di Examens de l'enseire de Suiets di Examens de l'enseire de l **PROTEINES**

DURÉE DE L'ÉPREUVE : 2h

CORRIGÉ

Dès que ce sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 4 pages numérotées de 1/4 à 4/4.

BTS BIOTECHNOLOGIES	•	Session 2011
Biochimie structurale et fonctionnelle des protéines	Code sujet: BOE3BP bis	Page : 1/4


Etude de l'enzyme glucose oxydase GOD ou GOx, enzyme extrait d'*Aspergillus niger*, utilisé pour le dosage enzymatique du glucose.

N°	Réponse	Points
1.	Etude de la structure et des propriétés de la glucose oxydase	12 points
1.1.	6 classes oxydoréductases, tranférases, hydrolases, lyases, isomérases, ligases	3 points
1.2.	Glucose + O ₂ β gluconolactone + H ₂ O ₂ β gluconolactone + H ₂ O acide gluconique Soit 1ere réaction soit le bilan des 2 avec la présence de l'eau.	1 point
1.3.	Protéine globulaire, structure secondaire avec feuillets bêta et hélice alpha, glycosylée par du mannose, dimérique, chaque sous unité liée à du FAD	2 points
1.4.	Partie protéique de l'enzyme sans le coenzyme donc sans le FAD	1 point
1.5.	N-acétyl OH OH O-C-CH Sérine (GalNAc) O-CCH ₃ E. Josperd (2005) Remarque: la formule du sucre n'est pas demandée! et une seule glycosylation au choix est à traiter	2 points
1.6.	Structure simplifiée FAD = flavine adénine dinucléotide : Adénine Flavine Ribose P - P	1 point 1 point
	Rq : on valide la structure générale d'un nucléotide	

BTS BIOTECHNOLOGIES		Session 2011
Biochimie structurale et fonctionnelle des protéines	Code sujet: BOE3BP bis	Page : 2/4

1.7.		1 point
	Glucose + FAD	
	FADH ₂ + O ₂ H ₂ O ₂ + FAD Soit réaction détaillée soit uniquement le fait que FAD prenne en charge 2H ⁺ et 2 e ⁻	
2.	Extraction et purification de la glucose oxydase	5 points
2.1.	Etape 2 = carboxyméthyl cellulose donc résine cationique (avec groupements carboxyliques) Etape 4 = Diéthyl amino éthyl cellulose donc résine anionique (avec groupements amines)	1 points
2.2.	Les protéines précipitent, si l'on ajoute des solutions concentrées de sels neutres comme le sulfate d'ammonium. Le sulfate d'ammonium agit de la façon suivante : il fixe l'eau donc les protéines interagissent entre elles et précipitent. Le précipité récupéré est resolubilisé et la solution est fortement « salée » : la dialyse effectuée ensuite permet le dessalage donc l'élimination du sulfate d'ammonium, qui peut perturber les étapes suivantes de purification.	2 points
2.3.	Facteur d'enrichissement = activité spécifique après purification / activité spécifique avant purification =80/20 = 4	2 points
3.	Utilisation de la GOD dans les kits de dosage du glucose	13 points
3.1.	Le glucose présent dans l'échantillon est quantitativement transformé par la GOD en gluconolactone et H_2O_2 (réaction 1). L' H_2O_2 formée est dégradée par la POD avec apparition d'un composé coloré en rouge (réaction 2). Il y a proportionnalité entre la concentration de glucose et l'intensité de la couleur. Réaction 1 : Glucose + O_2 gluconolactone + H_2O_2 Réaction 2 : H_2O_2 + PAP + chloro-4-phénol H_2O_2	2 points
3.2.	Méthode en point final car on laisse les enzymes GOD et POD agir durant 10 min à 37°C ou 20 min à 20°C : ainsi tout le glucose sera transformé.	1 point
3.3.	UI/L = c'est la quantité d'enzyme qui transforme 1 µmole de substrat par min et par L de réactif R1	1 point
3.4.	R1: renferme le tampon nécessaire au maintien du pH durant les réactions catalysées par la POD et GOD, la GOD permettant la transformation su substrat à doser, la POD permettant la réaction indicatrice et un des chromogènes visualisant la détection. R2: renferme le deuxième chromogène dont la transformation libèrera un produit coloré. R3: est la solution étalon de glucose à 1g/L. Il permet de faire un étalonnage en un point par comparaison.	2 points 0,5 point 1 point .

	BTS BIOTECHNOLOGIES		Session 2011	
	Biochimie structurale et fonctionnelle des protéines	Code sujet: BOE3BP bis	Page: 3/4	
::·				

Le total des points est à diviser par 2 pour obtenir une note sur 20 points

BTS BIOTECHNOLOGIES		Session 2011
Biochimie structurale et fonctionnelle des protéines	Code sujet: BOE3BP bis	Page : 4/4